Advanced Technologies Report
- Asset Generation

Ricardo Heath
15000805

University of the West of England

July 17, 2019

he task was to use machine learning to gener-
T ate assets for a game using frameworks avail-
able in Python. The solution was to use a com-
bination of a conditional GAN and a deep convo-
lutional GAN to create a conditional deep convo-
lutional GAN using the Keras library which could
generate textures, and then creating supporting
scripts to create a minecraft texture pack.

1 Introduction

This project sets out to apply labels to a DCGAN to
generate specific textures that are based on existing
minecraft textures. This is done by modifying the layers
of the generator and discriminator of the DCGAN to
take categorical label data as input. The generator
should then be able to generate any learnt texture that
can be found in a minecraft texture pack in order to
compose a new one entirely from scratch.

2 Related Work

A new framework for generative models via an ad-
versarial process of two networks was proposed by
Goodfellow et al., 2014. This framework is known as
Generative Adversarial Network, or GAN. This features
semi-supervised learning, improving performance of
classifiers with limited label data and was used suc-
cessfully on the MNIST dataset.

This work was followed up on by Mirza and Osindero,
2014 which proposed a modification that makes the
generation conditional based on labelled inputs fed to
the generator and discriminator. The conditional GAN
(CGAN) successfully generates MNIST digits by using

the digit labels.

A new form of GAN was introduced by Radford, Metz,
and Chintala, 2015 which is based on the work done
with convolutional networks. The proposed architec-
ture is a Deep Convolutional GAN (DCGAN) which is
capable of unsupervised learning. DCGANs were not
as successful at unsupervised learning as convolutional
networks.

A network similar to the one in this prototype is
described by Gauthier, 2014 which applies conditional
labelling to a GAN that uses convolutional layers to gen-
erate faces. Their model demonstrated that conditional
information could be used to deterministically control
the output of their generator which used convolutional
layers.

The work done by these authors forms the basis of
the CDCGAN and its feasibility as a working model
for generating conditional images in an unsupervised
learning environment.

3 Method
3.1 GAN

Generative adversarial networks are a type of neural
network architecture which are composed of two in-
dependent networks that are pitted against each other.
These networks are the discriminator and the gener-
ator. The generator produces some output, which is
marked as fake. The discriminator takes the generators
output as input and determines if it’s real or fake.

If the discriminator classifies the generators output
as fake then the generator has made a mistake and
tries to compensate for it in future tests, if it classifies
it as real then the discriminator has made a mistake



Advanced Technologies Report - Asset Generation

and becomes the one to compensate. This back and
forth is what causes the networks to fight each other
and improve over time, attempting to outdo the other.

A combined model of the discriminator and gener-
ator is created in order to provide a feedback loop to
the generator for training.

3.2 DCGAN

Deep convolutional GAN’s build on standard GAN’s by
applying convolutional filters to the layers of the dis-
criminator and generator. These convolutional filters
are better able to discern features in the data.

3.3 CGAN

Conditional GAN’s build on standard GAN’s by sup-
plying an additional input to the generator and dis-
criminator. This input is used to categorise the other
input with a label. Using this labelling technique allows
for specific features to be detected independently of
others.

3.4 CDCGAN

A CDCGAN was created by applying label inputs to
the generator for the DCGAN. Combining these two
GAN’s allows for specific textures to be generated with
a higher quality than a traditional CGAN.

3.5 Layers

Neural networks use layers which are a collection of
nodes that work together in the network at a specified
level. The input layer is the raw data of the network,
it is not modified in this layer. The hidden layers are
attempting to pick up certain features of the previous
layer and learn from them, with their weights being
adjusted based on the loss function. The output layer
contains the final result of the hidden layers. The
output layer of the generator will be a (64, 64, 3) image
while the output of the discriminator will be a single
node between 0 and 1.

3.5.1 Convolution

Convolutional filters are used to transform inputs in
to a smaller and more specific set of outputs. It is an
element matrix multiplication operation in which the
image is multiplied by the kernel or filter, resulting
in the transformed output. A stride can be used to
create gaps in the filter, as it will step over a certain
number of nodes. A convolutional layer can be used
for deconvolutions by varying the filter size compared
to its inputs. The output of a convolutional layer is
smaller than that of its input, while the output of a
deconvolution is larger.

Label [21]

Noise [100] Dense [1024]

Dense [1024] Tanh

LeakyRelLu Dense [8 * 8 * 128]

Dense [8 * 8 * 128] Batch Normalization

Reshape [8, 8, 128] Reshape [8, 8, 128]
Concat [8, 8, 256]
UpSampling2D [16, 16, 256]
Conv2D (128) [16, 16, 128]
Relu
UpSampling2D [32, 32, 128]
Conv2D (64) [32, 32, 64]
Relu
UpSampling2D [64, 64, 64]

Conv2D (3) [64, 64, 3]

Tanh

Figure 1: The layers of the generator model

Page 2 of 6



Advanced Technologies Report - Asset Generation

3.5.2 Upsampling

Upsampling repeats the elements of its input such that
it will be scaled to a larger output. The scaling output
can differ based on the interpolation used, such as
nearest or bilinear.

3.5.3 Max Pooling

Max pooling is a layer primarily found in DCGAN’s
inbetween the convolutional layers. It applies a filter

to the layers input which takes the max of a region.

The region will depend on the given size of the filter
and its stride. This results in a downsampled output.

3.6 Activation Functions

Activation functions are used to process the outputs
of a layer and map them to specific values. Activation
functions are either linear or non-linear. Non-linear
functions are used more often as they have specific
ranges of values.

3.6.1 Sigmoid

Sigmoid activation maps inputs to a range between 0
and 1. This is useful when predicting probabilities and
as such is found as the last layer in discriminators.

S(z) = (D

3.6.2 Tanh

Tanh activation is similar to sigmoid in shape and maps
inputs to a range between -1 and 1. The advantage
of Tanh compared to sigmoid is in mapping negative
inputs to a negative value while ensuring inputs near
0 will remain near 0.

e2r —1

@)= a1 2)

3.6.3 RelLu

Rectified Linear Unit activation maps inputs to a range
between 0 and infinity. Negative inputs are discarded
from further layers, which can sometimes be desirable
so as to minimize node activations though Dying ReLu
is an issue where nodes can always be negative and
thus are never trained.

(3

R(x){x m>0}

0 z<=0

Leaky ReLu was created to solve this by allowing
for negative inputs to be activated using the gradient
o with a typical value of 0.01. This alpha value is
multiplied with the negative input resulting in small
negative outputs.

4

3.7 Generator

The layers of the generator are shown in Figure 1.
Conv2D layers use a kernel size of 5. The layers han-
dling label input use tanh activation as it’s better for
classification. Upsampling uses factors of 2. 3 Cycles
of UpSampling, Conv2D, and Activation are applied in
order to pick up features and create the correct output
shape for the image. Changing the filter size of the
convolutions would result in a different output image
resolution, or the number of cycles can be changed to
change the amount of detail picked up in an image
with more or less detail.

The layers handling the label input ends in batch nor-
malization before reshaping. This involves normalizing
the inputs by modifying its activation so that higher
learning rates can be used due to the impact of outliers
being minimized. Aspects of the network which were
unable to train may now have a chance to. The main
reason to use batch normalization here is to aid in the
over-fitting issue as it adds variance to the activations
of the label input. This helps to prevent mode collapse
as the labels aren’t used as the only basis for generating
the output image. Mode collapse can happen when the
input noise becomes insignificant to the output result.

The output layer of the generator uses Tanh activa-
tion as the pixel values of an image range between -1
and 1.

3.8 Discriminator

The layers of the discriminator are shown in 2. The
input is an image where each node has a value between
-1 and 1 regardless of its authenticity in order to prevent
the discriminator from overfitting through learning the
differences in the range of node values.

Conv2D layers use a kernel size of 5 and perform
deconvolutions. MaxPooling2D applies a downsam-
pling with a factor of 2 after each deconvolution. The
filter size of the decovolutions matches those of the
generator so as to try and detect similar features in the
two networks.

The discriminators single sigmoid output is used to
determine the authenticity of its input image.

3.9 Training

The discriminator is trained by itself in an epoch and
then the combined model is trained with discriminator
training disabled.

3.10 Backpropagation

Forward propagation involves the input data of a model
being passed throughout all the layers until reaching

Page 3 of 6



Advanced Technologies Report - Asset Generation

Image[64, 64, 3]

Conv2D (64) [64, 64, 64]

Tanh

MaxPooling2D [32, 32, 64]

Conv2D (128) [32, 32, 128] Label [21]

Dense [256]

MaxPooling2D [16, 16, 128] Tanh

Flatten [32768] Batch Normalization
Concat [33024]

Dense [512]

RELL

Dense [1]

Sigmoid

Figure 2: The layers of the discriminator model

the output layer, The output layer starts off innacurate
due to the weights of previous nodes being incorrect
as they lack training. The output layers prediction can
be compared to the ground truth to measure the error
of that propagation.

Forward propagation forms half of backpropagation.
Once the error is calculated for the forward propaga-
tion the error is propagated backwards through the
layers of the network so that the weights of every node
are modified by the optimizer to minimize that error.

3.11 Optimizer

Optimizers are used to train neural networks faster by
changing the weights and biases of the nodes in the
network. The loss of a network is used by the optimizer
to change the weights in a better direction, attempting
to make continual progress until a minima is reached.
Gradient descent is a simple optimizer in Keras that
implements the gradient descent algorithm that cal-
culates what small changes in weight does to the loss
function, a general version of which can be seen in Fig-
ure 4, and adjusts those weights based on a gradient.
Local minima’s are undesirable due to not reaching the
best possible node weights. Higher learning rates allow
the optimizer to escape them.

The Adam optimizer is used for the discriminator
and combined model with a learning rate of 0.0002
and a beta 1 of 0.5. Adam uses the momentum of past
gradients by using small amounts of them and adding

coal_ore birch_log gravel coal_ore gold_ore
. 3 s:—! . . ;
- W
sand iron_ore ice sand quartz ore
3 . Fery,
i o ‘ o
A-l, 4 % |

gravel gold_ore

lapis_ore stone

oak Iog

iron_ore grass_block_side

)
@

b &

i

t;

diamond_ore quartz ore emerald_ore quartz_ore

Figure 3: A sample of the generators output at epoch 1600,
with mode collapse

1 & ) )

J(0) = =Y Cost(he(z?),y?

)= 7 3 Costlia(e®).5%)
Figure 4: General loss function

them to the current gradient, as well as using previous
gradients to calculate the current gradient.

3.11.1 Adversarial Ground Truths

Ground truths are used in training to allow the discrim-
inator and generator know if they succeeded or failed
in fooling the other. The ground truths for real data is
1 and fake data 0.

3.11.2 Data

Training data is loaded in batches every epoch using
the Keras generator flow_from_directory and with cat-
egorical labels. The pixel values of the images are
normalized to be between -1 and 1.

3.11.3 Noise
Spherical noise is sampled on every epoch, once for
each training image. Spherical noise is used instead

of linear as described by White, 2016 for producing
sharper samples.

N
Hy(0) = =15 > yi-log(p(y)+ (1=3:)-log (1=p(y:)

Figure 5: Binary cross entropy loss function

Page 4 of 6



Advanced Technologies Report - Asset Generation

Model Accuracy

100 +

80 -

o
o
L

Accuracy

40

20 -

0 200 400 600 800 1000 1200 1400 1600
Epochs

Figure 6: The discriminators accuracy over 1600 epochs

3.11.4 Loss

Binary cross entropy is used as the loss function, as
shown in Figure 5, for this CDCGAN and it works to
condense the entire set of weights of the network in
to a single value such that improvements in that value
correspond to a better model. That value is the loss,
lower being better. The loss of the discriminators out-
put when dealing with training images and generated
images is averaged together to produce the loss shown
in Figure 7.

3.12 Saving & Loading

The generator model is saved and loaded using Keras.
Compilation must be turned off when loading and the
model cannot be trained further.

3.13

Images of the training data are output for sanity check-
ing alongside the generators output using matplotlib.

Image Output

3.14 Texture Packs

A texture per label is generated from the CDCGAN and
saved to the correct file structure for minecraft texture
packs.

4 Evaluation

4.1 Discriminator Accuracy

The discriminator’s ability to detect authentic images
is improving over time as can be seen in Figure 6. The
accuracy categorical and is calculated using the mean
accuracy rate across all predictions of the discriminator
for that epoch. The increase in accuracy could signify
that the generator is becoming predictable and is being
beaten easily but more data is required, as that would

Discriminator Loss

0 200 400 600 800 1000 1200 1400 1600
Epochs

Figure 7: The discriminators loss over 1600 epochs

Generator Loss

121

101

Loss
o

0 200 400 600 800 1000 1200 1400 1600
Epochs

Figure 8: The generators loss over 1600 epochs

be shown with an accuracy nearing close to 100% and
with less variance.

4.2 Loss

The discriminator’s loss is trending down over time as
shown in Figure 7. This trend matches the inverse of
the accuracy trend, indicating that the model is contin-
uing to learn and is working correctly. The generators
loss shown in Figure 8 is trending upwards, which is
expected as the trend should be similar to the inverse
of the discriminator. The amount of upward trend
is unexpected compared to the amount of downward
trend for the discriminator however. The model has
visible mode collapse in its output, it’s possible that
the generator is ignoring the noise input relative to the
label input and won’t improve as a result, leading to an
ever-diverging loss between the two networks when
in a working network they should eventually stabilize.

Page 5 of 6



Advanced Technologies Report - Asset Generation

5 Conclusion

Applying the labelling of a CGAN to a DCGAN allowed
for generating specific textures with the advantages
of the convolutional filters that a DCGAN is known
for. Mode collapse is present in the model as shown in
Figure 3 which could be prevented in future work by
using dropout, label smoothing or applying gaussian
noise to the discriminators inputs to prevent overfitting.
The combination of these GANSs is a simplistic alteration
which resulted in good output. The generated textures
fit suitably within the minecraft aesthetic despite the
mode collapse of the model.

Bibliography

Gauthier, Jon (2014). “Conditional generative adver-
sarial nets for convolutional face generation”. In:
Class Project for Stanford CS231N: Convolutional Neu-
ral Networks for Visual Recognition, Winter semester
2014.5, p. 2.

Goodfellow, Ian et al. (2014). “Generative adversarial
nets”. In: Advances in neural information processing
systems, pp. 2672-2680.

Mirza, Mehdi and Simon Osindero (2014). “Condi-
tional generative adversarial nets”. In: arXiv preprint
arXiv:1411.1784.

Radford, Alec, Luke Metz, and Soumith Chintala
(2015). “Unsupervised representation learning with
deep convolutional generative adversarial networks”.
In: arXiv preprint arXiv:1511.06434.

White, Tom (2016). “Sampling generative networks”.
In: arXiv preprint arXiv:1609.04468.

Page 6 of 6



