
Advanced Technologies Report
- RTS AI
Ricardo Heath
15000805

University of the West of England

July 17, 2019

T he task is to create an RTS AI within a frame-
work that uses a core graphics API. Direct3D 11

was chosen as the graphics API for a 3D prototype
that showcases RTS AI in the form of squad-based
groupings and pathfinding.

1 Introduction

The framework will be created using Direct3D 11 for
drawing functionality and Win32 for windowing func-
tionality. These API’s will form the core of a 3D frame-
work that supports instancing, deferred directional
lighting, vertex and pixel shaders, texturing, and cam-
era functionality. A 3D terrain is generated for the
world that the RTS AI will occupy and A* will be used
as the pathfinding algorithm for units in squads.

2 Related Work

Pathfinding in computer games as described by Cui and
Shi, 2011 is done through the use of the A* pathfind-
ing algorithm, which is similar to Djisktras’s algorithm
with the addition of a heuristic. They go on to explain
how a small amount of heuristic overestimation may
result in improved performance due to fewer nodes
being searched, though the amount by which to over-
estimate is not known before it devolves to a worse
implementation.
The documentation on MSDN (Kennedy and Sar-

tran, 2018) goes in to detail regarding how to use
Direct3D11 to create a 3D framework with the render-
ing pipeline and the COM model. The first ever game
to use Direct3D11 was Battleforge (Plunkett, 2009), a
hybrid of an RTS and card game. This confirms that

my initial approach to the problem is along the rights
lines.

3 Method

3.1 Direct3D11

3.1.1 Hardware Interface

Direct3D provides access to the GPU
through ID3D11Device and drawing through
ID3D11DeviceContext. ID3D11Device is used to
configure Direct3D resources prior to rendering
while ID3D11DeviceContext is used to load Direct3D
resources and perform draw calls that go through our
rendering pipeline.

3.1.2 DXGI Adapter

The DirectX Graphics Interface adapter is used to rep-
resent a display. The adapter finds the display mode
that matches our required window size.

3.1.3 Device & Swapchain

Swapchains are used to enable buffered rendering.
This is done by drawing to a buffer while another buffer
is displayed to the user and then swapping them.
Once the swapchain description is configured to

match our window the swapchain and device can be
created together.

3.1.4 Render Target

A render target is used as a surface for drawing pixels
to. An ID3D11Texture2D object is created and assigned

Advanced Technologies Report - RTS AI

as the backbuffer for the swapchain.

3.1.5 Depth Buffer

A depth-stencil buffer is a ID3D11Texture2D object
that is used to determine which pixels should be
drawn based on how far an object is from the camera.
A standard depth-stencil state was described using
D3D11_DEPTH_STENCIL_DESC and a depth-stencil
view was created as required to enable depth testing.

3.1.6 Rasterizer State

The rasterizer state affects how the rasterization stage
converts vertices to pixels. This involves clipping ver-
tices outside of the view frustram and invoking the
pixel shader. A normal solid-fill state and a wireframe
state are created with back-face culling.

3.1.7 Viewport

The viewport determines the content that will be dis-
played in the window through the back buffer based
on the described rectangle. The full client area of the
window is used.

3.1.8 Graphics Pipeline

The graphics pipeline is the process in which draw calls
are executed with the input data processed such that
pixels are generated and output to the render target.
Figure 1 shows the Direct3D11 Pipeline. This project
uses the input-assembler, vertex shader, rasterizer, pixel
shader and output-merger stages of the pipeline.

3.1.9 Matrices

World, projection, and view matrices are created and
used to determine the transforms of objects relative
to the screen and the game world by converting be-
tween different spaces. A standard projection matrix
is created based on the window size. The view matrix
is constructed by the camera and the world matrix is
constructed within the Vertex Shader.

3.1.10 Shader Language

Dierct3D uses the HLSL (High Level Shader Language)
to program shaders, which is similar to C. HLSL
Shaders can be compiled to CSO (Compiled Shader
Object) files at compile time, or compiled at runtime
from an array of characters. This project compiles them
at runtime.

3.1.11 Vertex Shader

The vertex shader is used to convert vertices to pixel
based mappings. These vertices are manipulated by
the world, view, and projection matrices.

Figure 1: The entire Direct3D11 Graphics Pipeline as described
by Microsoft

Page 2 of 6

Advanced Technologies Report - RTS AI

This projects vertex shader creates a world matrix
based on the rotation, scale, and position of an in-
stance.

Scale =


scalex 0 0 0

0 scaley 0 0
0 0 scalez 0
0 0 0 1

 (1)

RotationX =


1 0 0 0
0 cos(rotx) −sin(rotx) 0
0 sin(rotx) cos(rotx) 0
0 0 0 1

 (2)

RotationY =


cos(roty) 0 sin(roty) 0

0 1 0 0
−sin(roty) 0 cos(roty) 0

0 0 0 1

 (3)

RotationZ =


cos(rotz) −sin(rotz) 0 0
sin(rotz) cos(rotz) 0 0

0 0 1 0
0 0 0 1

 (4)

Rotation = RotationX ×RotationY ×RotationZ
(5)

Position =


1 0 0 0
0 1 0 0
0 0 1 0

posx posy posz 1

 (6)

World = Scale×Rotation× Position (7)

The world matrix is applied to the vertices, followed
by the view and projection matrices. In a non-instanced
shader the world matrix would be passed using a con-
stant buffer. The order of matrix multiplication is im-
portant as they are non-commutative.
The vertex shader outputs are fed to the pixel shader.

3.1.12 Pixel Shader

The pixel shader stage is used to determine the final
colour of a pixel. The output data from the vertex
shader stage is used to calculate lighting data and
texture sampling to determine the correct pixel colour.
Lighting consists of ambient light and directional

light. The directional light information is passed to the
pixel shader from the CPU. The lighting in this project
is diffuse.
Diffuse lighting estimates the impact that a light has

on an object based on its direction. The brightest parts
of an object become those pointing directly at the light.
This is done using the vertex normals to calculate the
light intensity for each pixel.

The intensity of the diffuse light for each pixel is
calculated and then used to add additional colour to
the ambient colour present in the scene.

lighti = pixeln · lightd · −1 (8)

lighti is intensity, pixeln is the the normals, lightd
is the direction which must be inverted.

colour = (lighta+lightc ·lighti)·pixelc ·texturec (9)

lighta is ambient light colour, lightc is the directional
light colour, pixelc is the initial pixel colour based on
the vertices colour, and texturec is the colour of a tex-
ture after sampling.

3.2 Framework

3.2.1 Shader Class

This project uses a shader class to handle the vertex
and pixel shaders. Shaders are compiled from a file.
The shaders are then created and the input layout is
setup with per-vertex and per-instance data.
The vertex and pixel shader constant buffers are then

created with the D3D11_CPU_ACCESS_WRITE access
flag. The light buffer is padded to 16-byte alignment.
The constant buffer for the vertex shader contains the
view and projection matrices while the constant buffer
for the pixel shader contains the directional light colour
and direction.
A sampler state is created for the pixel shader so it

can sample pixel colours from textures.
The constant buffers are updated each frame and a

ID3D11ShaderResourceView for the texture is passed
to the pixel shader on each draw call.

3.2.2 Models

A model object is created to load appropriate vertex
information and texture file. Instancing is used for each
model by reusing common data, allowing for batched
draw calls. The required vertex and instance data is
defined via structs. Vertex data is reused for every
instance of a model.

1 struct Vertex
2 {
3 dx:: XMFLOAT3 position;
4 dx:: XMFLOAT2 texture;
5 dx:: XMFLOAT3 normal;
6 };

1 struct Instance
2 {
3 dx:: XMFLOAT3 position;
4 dx:: XMFLOAT3 rotation;
5 dx:: XMFLOAT3 scale;
6 dx:: XMFLOAT4 colour;
7 };

Page 3 of 6

Advanced Technologies Report - RTS AI

An instance buffer is created with the
model with a small initial size and the
D3D11_CPU_ACCESS_WRITE access flag.
When an instance is added, removed, or changed,

the instance buffer needs to be updated. The instance
buffer is updated every frame prior to rendering by
mapping with D3D11_MAP_WRITE_DISCARD and is
grown when required by recreating it.

3.2.3 Textures

A texture object is created that contains a
ID3D11ShaderResourceView and ID3D11Texture2D.
The texture is loaded from a TGA file. This is composed
of a header defining the width, height, and bits per
pixels, and a series of bytes representing each pixels
colour. The TGA file is used to define the width &
height of a texture description object and create the
texture resource with the TGA pixel data.

3.2.4 Ray-triangle intersection

Ray-triangle intersection is used to get the intersec-
tion position of mouse clicks so that it can be used to
command units to move to the closest cell of that inter-
section. It is also used to vertically sample the terrain
to create A* nodes at the intersection points, creating
a grid.
Ray-triangle intersection algorithm using Barycentric

coordinates is used.
Two edges of the triangle are calculated and then

the normals are calculated by multiplying the edges
together.

normal =

e1y · e2z
e1z · e2x
e1x · e2y

−
e1z · e2y
e1x · e2z
e1y · e2x

 (10)

the magnitude of the normals is then calculated to
normalize the normals

normal√
n2
x + n2

y + n2
z

(11)

The distance from the origin to the triangle is found
and the dot of the normals and the ray is done to get
the denominator. the numerator is the inverse of the
normals dot ray origin. The intersection is then the
numerator over the denominator and the intersection
vector is start+(dir∗ t). Normals are calculated for ev-
ery edge and the determinant is calculated and checked
to see if it is inside our outside the triangle. If the in-
tersection for all edges is inside the triangle then the
intersection is valid.

3.2.5 Camera

The camera controls the view matrix. The view matrix
is created for a left-hand coordinate system by using
the camera position, the up vector, and a focal point.

1 dx:: XMMATRIX rotation_matrix = dx::
XMMatrixRotationRollPitchYaw(
pitch , yaw , roll);

2 lookat_vector = dx::
XMVector3TransformCoord(
lookat_vector , rotation_matrix);

3 up_vector = dx::
XMVector3TransformCoord(up_vector
, rotation_matrix);

4 focalpoint = dx:: XMVectorAdd(
position_vector , lookat_vector);

5 view_matrix = dx:: XMMatrixLookAtLH(
position_vector , focalpoint ,
up_vector);

3.3 AI

3.3.1 RTS

3.3.2 World-space mouse projection

Movement commands for AI units require projecting
mouse coordinates in to world-space from screen-space.
This is done by unprojecting the mouse coordinates us-
ing the projection and view matrices with the viewport
information.

1 near_pos_vec = dx::
XMVector3Unproject(

2 near_pos_vec ,
3 0, 0,
4 width , height ,
5 0.0f, 1.0f,
6 projection_matrix ,
7 view_matrix ,
8 world_matrix);

3.3.3 Pathfinding

A* can find the shortest distance between two nodes
using a heuristic function to determine the estimated
cost, known as H to move between nodes, and the
actual cost to move between nodes, known as G. The
total cost of a node is F = G + H. If the heuristic
distance is ever larger than the true distance then the
A* search is not guaranteed to find the shortest path.
A 2D grid of nodes with 3D positions is created by

sampling every triangle in the terrain vertically using
ray-triangle intersection, with each intersection being
spaced out equally. Nodes below or above a certain
height are unwalkable due to being water or mountain-
ous terrain.
A* works by maintaining an open and closed list of

nodes. Nodes in an open list are being checked, while
nodes in a closed list will form the final path from the
starting node to the goal node. The starting node forms
the beginning of the open list. The neighbouring nodes
of the starting node are added to the open list and the
starting node is then moved to the closed list.

Page 4 of 6

Advanced Technologies Report - RTS AI

Figure 2: Using the modified octile distance heuristic, RTS
units path around the base of a mountain instead
of over it.

A loop is then performed until the goal node is part
of the closed list thus forming our path, or we run out
of open cells, in which case no path was found.
On each iteration a node in the open list with the

lowest F cost is selected and moved to the closed list,
making it the current node.
The neighbouring nodes of that node are added to

the open list, ignoring duplicates and any nodes in the
closed list. The costs for each of the neighbouring cells
are recalculated based on the current cells G cost plus
the H cost from the current cell to its neighbours. If
this recalculated cost is better than the current neigh-
bouring cell G cost then the current node is made a
parent of its neighbours. Any cell not in the open list
is added with these calculated costs.
Once a path is found a list of nodes is constructed,

starting from the goal node and working backwards
by grabbing the parents of each node. The list is then
reversed, resulting in the final path.

3.3.4 Heuristic

A modified octile distance heuristic is used for calculat-
ing the H cost of each node.An orthogonal movement
cost of 100 referred to as D is used with a diagonal
movement cost of 140 which is an estimate of

√
(2D),

referred to as D2. The heuristic works by calculating
the steps distance when not using diagonals and sub-
tracting the steps that were saved by using them. The
number of diagonal steps is min(distx, disty) with ev-
ery step having a cost of D2 yet saving 2D orthogonal
steps.
The octile distance heuristic is calculated by taking

the absolute difference between grid positions of the
nodes.

dist = |
(
nodex − goalx
nodey − goaly

)
| (12)

and running it through the following equation

h = D(distx + disty) + (D2− 2D) ·min(distx, disty)
(13)

The only difference between this and the Chebyshev
distance heuristic is that the diagonal movement cost is√

(2D) instead of 2D. Octile is better when movement
is performed in terms of real space and not a grid due
to accurate diagonal distances.
A modified version of the octile distance heuristic is

used to add a vertical movement penalty, incentivizing
the creation of paths around mountains and valleys.
This height penalty is calculated using the following
equation, with nodea and goala being the real-world
height values of the node.

penalty = 2D(|nodea − goala|) (14)

penalty is then added to h to form our final heuristic.

3.3.5 Squads

Squads consist of several units. When a movement
command is given a flood fill is performed around the
goal node. To perform the flood fill neighbouring nodes
are gathered until enough unique and walkable nodes
have been found, one for every unit in a squad. These
form a list of valid nodes. The list of valid nodes may
contain more nodes than the number of units so it’s
sorted based on the heuristic function from itself to the
goal node, ensuring the closest neighbouring nodes are
used. This maintains the formation at the end of the
path. Each unit then finds a path from their position to
one of the nearby goal nodes, starting from the closest
goal node in the list.

4 Evaluation

4.1 Heuristic

The modified octile distance heuristic works well in
ensuring that the path taken by units is realistic. As can
be seen in Figure 2 the units of the squad are pathing
around the base of the mountain. There are issues with
this home-grown solution in that over long distances
the heuristic becomes innacurate. This issue is rarely
seen within the prototype and may be caused by the
estimated distance of the heuristic being longer than
that of the real distance, causing A* to lose its property
of finding the shortest path.

4.2 Squad Splitting

The technique of using flood fill on the goal node to
find desirable goal positions for every unit of a squad

Page 5 of 6

Advanced Technologies Report - RTS AI

Figure 3: The members of a squad split around obstacles due
to their individually shorter paths

worked well to ensure the end goals were correct but
does not impact the cost of generating each path so as
to ensure that units in the same squad stay together,
even if they get there a little slower. This can be seen in
Figure 3 where the squad splits in two to path around
a mountain in the quickest way possible.

5 Conclusion

The framework could be further improved by adding
additional lighting types, such as point lights, and ad-
ditional light shading, such as phong. Shadows could
also be added. Additional texture loading options be-
sides TGA would be useful and transparent objects are
not implemented.
The RTS AI requires a few improvements. A better

heuristic that allows A* to find the shortest path is
required and in a functioning RTS game it would not
be desirable to have units in a squad split, so that
issues must be fixed as well. Additional work should be
done to ensure that a squad maintains their formation
while traveling when possible and to avoid overlapping
eachother in the same positions.
The task was successfully accomplished with an ef-

fective RTS AI and framework.

Bibliography

Cui, Xiao and Hao Shi (2011). “A*-based pathfinding
in modern computer games”. In: International Jour-
nal of Computer Science and Network Security 11.1,
pp. 125–130.

Kennedy, John and Michael Sartran (2018). How to Use
Direct3D 11 - Windows applications. url: https://
docs.microsoft.com/en-us/windows/desktop/
direct3d11/how-to-use-direct3d-11.

Plunkett, Luke (2009). url: https://kotaku.com/
and-the-first-directx11-game-is-5371466.

Page 6 of 6

