
Advanced Technologies Report
- Raytracer
Ricardo Heath
15000805

University of the West of England

July 17, 2019

T he task is to create a CPU raytracer that sup-
ports reflections, refractions, shadows, and

PBR materials. The solution was to implement this
using the Rust programming language and create
a multithreaded monte carlo raytracer that uses a
BVH for spatial partitioning of the scene

1 Introduction

Raytracing is a slower but potentially more accurate
method of rendering graphical objects on a computer.
Rasterizers, such as those used in the games industry
that take vertex positions and convert them to pixels,
are not as accurate in modeling real lighting due to
only attempting to approximate global illumination
and the effects that indirect light rays have on a scene.
Some rasterizers get close using PBR shaders and ad-
vanced lighting, but they sacrifice visual fidelity for
performance. The raytracer created for this prototype
attempts to properly simulate global illumination via
indirect light bouncing.

2 Related Work

The ebook by Shirley, 2016 explores the implementa-
tion of a BRDF-incorrect monte carlo raytracer with the
standard raytracing features such as materials. The arti-
cle An Overview of the Ray-Tracing Rendering Technique
and other associated articles describe the creation of
a simple ray-tracer using BVH for spatial partitioning
and geometric intersection tests. The ebook by Pharr,
Jakob, and Humphreys, 2004 discusses physically cor-
rect rendering including the main rendering equation
for indirect lighting and the monte carlo estimator. This

project uses their work to create a prototype suitable
for solving the task.

3 Method

3.1 Raycasting

Raycasting is done by constructing a directional vector
and seeing if there are any intersections along that vec-
tor with anything in the scene. The scene is composed
of multiple shapes with varying materials. Rays are
cast for each pixel of the output image in order to cal-
culate colour based on the intersections or lack thereof.
A position along the ray is calculated as follows

pos = origin+ (t · direction) (1)

A ray is often used to represent a light ray in the
same way that light in real life will bounce around
surfaces until hitting your eyeballs.

3.1.1 Samples Per Pixel

The number of rays cast per pixel determines the noise
of the output image. Increasing the number of samples
leads to longer execution times with diminishing re-
turns in noise quality. Stratifying the samples can be
done to ensure that the location of the samples within
the pixel do not randomly converge on certain areas
and are instead distributed somewhat evenly.
Multiple samples per pixel results in anti-aliasing

along shape edges due to the samples of a pixel being
averaged together. Some of the samples will inter-
sect the shape and some will not, leading to smoother
edges.



Advanced Technologies Report - Raytracer

3.1.2 Parallelization

Raycasting is embarrassingly parallelizable as each
pixel can be computed independently of every other
pixel. The workload is split up in to chunks and pro-
cessed on different threads until all the pixels of that
chunk are complete.

3.1.3 Recursion

When a ray is cast in to the scene it will bounce upon
intersection. This bounce generates a new ray which
will be cast in to the scene again. A max recursion
depth of 100 is used to prevent running out of stack
space. Russian Roulette could be used to solve this
problem by stopping the recursive bouncing based on
probabilities. It’s important not to stop a sample too
early as it will introduce noise so a minimum threshold
of 1 or 2 bounces is used.

3.1.4 Epsilon

The smallest unit that two floating point values can
differ by is referred to as the Epsilon. Epsilon should
be added to the origin of each successive bounce as
to ensure that the next raycast is not internal to the
shape.

3.1.5 Monte Carlo

Global Illumination’s rendering equation is as follows

Lo(x, ωo) = Le(x, ωo)+

∫
Ω

Li(x, ωi)fr(x, ωo, ωi) cos θdωi

(2)
Monte carlo uses an estimator to solve the rendering

equation, that equation is as follows

V =
1

N

N∑
i=0

f(x)

pdf(x)
(3)

The bouncing that a ray exhibits allows a single ray
cast from the screen to collect multiple colour values
along its bounce path. These values are averaged to-
gether to form a single colour value. This averaging
is a simple and inaccurate version of the monte carlo
estimator.

3.2 Camera

The origin of the camera is (0, 0, 0) with the y-axis
going up and the x-axis going right. z-axis going in to
the screen is negative. Two vector offsets are used, one
horizontal and one vertical. The direction of the ray
can be described with the equation

bl + (u · horizontal) + (v · vertical) (4)
Where u and v are values between 0 and 1 repre-

senting the height and width of the current pixel in
relaton to the screen resolution.

3.3 Shapes

Intersection tests are used to determine if a ray collided
with the shape based on their geometric terms.

3.3.1 Sphere

A sphere has a position and radius. A spheres bound-
aries are calculated as follows

x2 + y2 + z2 = radius2 (5)

where if the left-hand is equivalent to the right hand
then the position is on the boundary of that sphere.
This can be simplified to this where p is the position

of the point as a vector and c is a vector of the center
of the sphere

dot((p− c), (p− c)) = radius2 (6)

If our ray at time t is on the boundary of the sphere
then an intersection has occurred.

3.3.2 Triangle

Ray-triangle intersection algorithm using Barycentric
coordinates is used.
Two edges of the triangle are calculated and then

the normals are calculated by multiplying the edges
together.

normal =

e1y · e2ze1z · e2x
e1x · e2y

−
e1z · e2ye1x · e2z
e1y · e2x

 (7)

the magnitude of the normals is then calculated to
normalize the normals

normal√
n2
x + n2

y + n2
z

(8)

The distance from the origin to the triangle is found
and the dot of the normals and the ray is done to get
the denominator. the numerator is the inverse of the
normals dot ray origin. The intersection is then the
numerator over the denominator and the intersection
vector is start+(dir∗ t). Normals are calculated for ev-
ery edge and the determinant is calculated and checked
to see if it is inside our outside the triangle. If the in-
tersection for all edges is inside the triangle then the
intersection is valid.

3.4 BVH

Bounding volume hiearchies are used as a spatial par-
tition to improve the runtime performane of the pro-
totype through intersection testing. BVH’s are a tree
structure, often implemented as a binary tree as in the
case of this project, in which every leaf node of the
tree is wrapped in a bounding volume, in this case an
axis-aligned minimum bounding box. These bounding

Page 2 of 4



Advanced Technologies Report - Raytracer

boxes are contained within larger bounding boxes, the
larger boxes being the parents of the smaller, such that
the root node is a bounding box that encompasses the
entire tree. If an intersection test is invalid for the
bounding box of the leaf node then none of its child
nodes could possibly intersect, reducing the amount of
tests performed.

3.4.1 AABB

Axis-aligned minimum bounding box is a box volume
in which the edges of the box are parrelel to the axis of
the world, in other words the box is not rotated. AABB
intersection is performed per axis.

t0 = min(
(minboxa − origina)

directiona
,
maxboxa − origina

directiona
)

(9)

t1 = max(
(minboxa − origina)

directiona
,
maxboxa − origina

directiona
)

(10)
Where the a subscript element is one of the position

axis (x, y, or z). minbox is the smaller values of the
AABB positions while maxbox is the larger values of
the AABB positions.
When t1 is less than t0 then the ray is outside the

bounds of the AABB for any of the axes then no inter-
section has occured, otherwise it has occured.

3.5 Materials

Materials are applied to shapes to define their interac-
tion with rays.

3.5.1 Diffuse

Diffusematerials are a simple material that have albedo
properties and absorption properties. Albedo deter-
mines the colour of the material while absorption de-
termines how much of the colour is received by the ray.
Rays that hit a diffuse material are then randomised for
the bounce by using a random unit sphere. A random
point is picked from the unit sphere that is tangent
to the intersection and then a ray is sent from that
intersection to the random point. The random point
in the unit sphere is calculated by rejecting any points
that lie outside of the area of that unit sphere.

3.5.2 Metallic

Metallic materials are a potential mirror material if
the fuzzyness of the metal is near 0. As fuzzyness
approaches 0 the clarity of the metallic materials re-
flection increases. The reflected ray is as follows

v − 2dot(v, n) · n (11)

Where v is the normalized ray direction and n is the
normal of the intersection plus the fuzzyness factor

Figure 1: BVH vs no BVH in different scenes

Page 3 of 4



Advanced Technologies Report - Raytracer

which is defined as fuzz ∗ pos where pos is a random
position in a unit sphere.

3.6 Gamma

Gamma correction should be used to ensure that the
brightness of the colour values matches our expecta-
tions. Image viewers in software assume images are
inherently gamma coloured, so despite our colour be-
ing accurate the viewer adjusts them such that they
become inaccurate. Gamma 2 is simplified to

colour = 255 ∗
√
colour (12)

while also adjusting the range of pixel values to
match the 8-bit range expected of each colour compo-
nent.

4 Evaluation

When the BVH for the project is used there is a very
noticeable improvement in performance as can be seen
in Figure 1. Two scenes were tested, one with roughly
a dozen objects and one with over a thousand. The
BVH in the small scene is 3.5 times quicker, while in the
big scene it is 18.5 times quicker. This is inline with the
expected n(log(n)) Big-O time of a BVH rather than a
linear speedup.

5 Conclusion

There are a number of issues with the project in that
the task was not fully accomplished. There is a lack
of sufficient materials, lighting, and shadows. There’s
also the possibility of fixing the cube shape present
in the prototype, the normals, and adding texturing.
Global illumination, while present, is not BRDF correct
and the lack probability distribution functions results
in the diffuse material being slightly emissive.

Bibliography

An Overview of the Ray-Tracing Rendering Technique.
url: http://www.scratchapixel.com/lessons/
3d-basic-rendering/ray-tracing-overview.

Pharr, Matt, Wenzel Jakob, and Greg Humphreys
(2004). Physically Based Rendering: From Theory to
Implementation. url: http://www.pbr-book.org/
3ed-2018/contents.html.

Shirley, Pete (2016). Ray Tracing in One Weekend.

Page 4 of 4


